Coherent and incoherent electron-phonon coupling in graphite observed with radio-frequency compressed ultrafast electron diffraction.
نویسندگان
چکیده
Radio-frequency compressed ultrafast electron diffraction has been used to probe the coherent and incoherent coupling of impulsive electronic excitation at 1.55 eV (800 nm) to optical and acoustic phonon modes directly from the perspective of the lattice degrees of freedom. A biexponential suppression of diffracted intensity due to relaxation of the electronic system into incoherent phonons is observed, with the 250 fs fast contribution dominated by coupling to the E_{2g2} optical phonon mode at the Γ point (Γ-E_{2g2}) and A_{1}^{'} optical phonon mode at the K point (K-A_{1}^{'}). Both modes have Kohn anomalies at these points in the Brillouin zone. The result is a unique nonequilibrium state with the electron subsystem in thermal equilibrium with only a very small subset of the lattice degrees of freedom within 500 fs following photoexcitation. This state relaxes through further electron-phonon and phonon-phonon pathways on the 6.5 ps time scale. In addition, electronic excitation leads to both in-plane and out-of-plane coherent lattice responses in graphite whose character we are able to fully determine based on spot positions and intensity modulations in the femtosecond electron diffraction data. The in-plane motion is specifically a Γ point shearing mode of the graphene planes and the out-of-plane motion an acoustic breathing mode response of the film.
منابع مشابه
Design and implementation of an optimal laser pulse front tilting scheme for ultrafast electron diffraction in reflection geometry with high temporal resolution
Ultrafast electron diffraction is a powerful technique to investigate out-of-equilibrium atomic dynamics in solids with high temporal resolution. When diffraction is performed in reflection geometry, the main limitation is the mismatch in group velocity between the overlapping pump light and the electron probe pulses, which affects the overall temporal resolution of the experiment. A solution a...
متن کاملPrimary structural dynamics in graphite
The structural dynamics of graphite and graphene are unique, because of the selective coupling between electron and lattice motions and hence the limit on electric and electro-optic properties. Here, we report on the femtosecond probing of graphite films (1–3 nm) using ultrafast electron crystallography in the transmission mode. Two time scales are observed for the dynamics: a 700 fs initial de...
متن کاملDefect-mediated phonon dynamics in TaS2 and WSe2
We report correlative crystallographic and morphological studies of defect-dependent phonon dynamics in single flakes of 1T-TaS2 and 2H-WSe2 using selected-area diffraction and bright-field imaging in an ultrafast electron microscope. In both materials, we observe in-plane speed-of-sound acoustic-phonon wave trains, the dynamics of which (i.e., emergence, propagation, and interference) are stro...
متن کاملElectron-phonon interactions in MoS2 probed with ultrafast two-dimensional visible/far-infrared spectroscopy.
An ultrafast two-dimensional visible/far-IR spectroscopy based on the IR/THz air biased coherent detection method and scanning the excitation frequencies is developed. The method allows the responses in the far-IR region caused by various electronic excitations in molecular or material systems to be observed in real time. Using the technique, the relaxation dynamics of the photo-excited carrier...
متن کاملElectron and lattice dynamics of transition metal thin films observed by ultrafast electron diffraction and transient optical measurements
We report the ultrafast dynamics of electrons and lattice in transition metal thin films (Au, Cu, and Mo) investigated by a combination of ultrafast electron diffraction (UED) and pump-probe optical methods. For a single-crystalline Au thin film, we observe the suppression of the diffraction intensity occuring in 10 ps, which direcly reflects the lattice thermalization via the electron-phonon i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 113 23 شماره
صفحات -
تاریخ انتشار 2014